ALKYL ADDITIONS TO ACTIVE OLEFINS BY TRIBUTYLGERMANIUM HYDRIDE REDUCTION OF ALKYL HALIDES

Philip Pike, Susan Hershberger and James Hershberger* Department of Chemistry Miami University Oxford, OH 45056

ABSTRACT: Tri(n-butyl)germanium hydride is a superior reagent for the reductive addition of alkyl halides to active olefins.

The intermolecular addition of alkyls to active olefins by the tri(n-butyl)tin hydride reduction of alkyl halides has recently been employed by several groups. T^{-3} The utility of reaction 1 (M = Sn) is apparently limited to terminal olefins, which must be employed in

RX	+Y	+ $Bu_3MH \xrightarrow{AIBN} R \xrightarrow{Y}$	+ Bu ₃ MX + RH	(1)
<u>1</u>	2	<u>3</u>	<u>4</u>	
x =	= halogen	Y = electron withdrawing group	M = Sn, Ge	

five- to ten-fold molar excess. The use of stoichiometric amounts of olefins results in formation of RH, the simple reduction product from RX, in significant amounts.²

We wish to report that tri-(n-butyl) germanium hydride is a superior reagent for reaction 1 in cases where competing production of RH is a problem. Indeed, fair to good yields of the addition product can often be obtained by employing near-stoichiometric quantities of the olefin.

Table I

1	2	<u>M</u>	Solvent	3(%)	4(%)
$\underline{n} - C_{11}H_{23}I$	а	Ge	CH ₃ CN	71	11
\underline{n} -C ₁₁ H ₂₃ I	а	Ge	с ₆ н ₆	63	14
$\underline{\mathbf{n}} - \mathbf{C}_{11}\mathbf{H}_{23}\mathbf{I}$	а	Sn	C ₆ H ₆	40	47
PhCH ₂ I	а	Ge	C ₆ H ₆	76	
PhCH ₂ I	а	Sn	с ₆ н ₆	33	
\underline{n} - $C_{11}H_{23}I$	b	Ge	CH ₃ CN	21	60
\underline{n} -C _{11H23I}	ь	Sn	с _{6н6}	5	95
<u>c</u> -c ₆ H ₁₁ I	b	Ge	CH ₃ CN	31	
<u>c</u> -C ₆ H ₁₁ I	Ъ	Sn	с ₆ н ₆	7	

The results summarized in Table I reveal the advantages as well as the limitations of the germyl hydride reagent. In a typical experiment the alkyl halide (0.5 mmol), the olefin (2a = acrylonitrile, 2b = 2-cyclohexen-l-one; 0.75 mmol), the metal hydride (0.5 mmol), and AIBN (azobis[isobutyronitrile], 0.1 mmol) were dissolved in 5 ml of deoxygenated solvent. The solution was warmed to reflux 6-12 h. The percent yields of 3 and 4 in Table I, based upon RX, were determined by GLC using an internal standard. GLC response factors were established using authentic samples of 3 and 4. The yield of 4 could not be determined for RH = cyclohexane, toluene due to chromatographic interference from the solvent. Benzene was the solvent of choice for M = Sn. Acetonitrile gave comparable or slightly improved yields for M = Ge.

The improved yields using tributylgermanium hydride presumably arise from the lower reactivity of germyl hydrides relative to stannyl hydrides towards alkyl radicals.⁵ As illustrated in the Scheme, product 4 results from hydrogen transfer to R[•] prior to the interception of R[•] by the active olefin. Foor yields of 3 were obtained, even with tributylgermanium hydride, when

the olefin was 2-cyclohexene-l-one. The rate of alkyl radical addition to internal olefins is apparently too sluggish to permit efficient production of 3. When l-iodoundecane was reduced by tributylgermanium hydride in the presence of a tenfold excess of 2-cyclohexen-l-one, 3- undecylcyclohexan-l-one was obtained in 68% yield. Clearly there is a need for metal hydrides of appropriate reactivity to permit the use of interesting olefins, such as hindered α,β - unsaturated ketones, in stoichiometric quantities. Research towards this goal is in progress.

Acknowledgement. The authors gratefully acknowledge financial support from the Miami University Faculty Research Committee.

References.

- 1. Burke, S. D.; Fobare, W. F.; Armstead, D. M. J. Org. Chem. 1982, 47, 3348.
- Addlington, R.; Baldwin, J. E.; Basak, A.; Kozyrod, R. P. J. Chem. Soc., Chem. Comm. 1983, 944.
- (a) Dupuis, J.; Giese, B.; Ruegge, P.; Fisher, H.; Korth, H.-G.; Sustmann, R. Angew. Chem. 1984, <u>96</u>, 887; <u>Angew Chem., Int. Ed. Engl.</u> 1984, 23, 896. (b) Dupuis, J.; Giese, B.; Hartung, J.; Leising, M.; Korth, H.-G.; Sustmann, R. J. Am. Chem. Soc. 1985, <u>107</u>, 4332.
- 4. Johnson, O. H.; Nebergall, W. H. J. Am. Chem. Soc. 1949, 71, 1720.
- (a) Johnston, L. J.; Lusztyk, J.; Wayner, D. D. M.; Abeywickreyma, A. N.; Beckwith,
 A. L. J.; Scaiano, J. C.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 4594. (b) Lusztyk,
 J.; Maillard, B.; Lindsay, D. A.; Ingold, K. U. J. Am. Chem. Soc. 1983, 105, 3578.

(Received in USA 16 September 1985)